Differential modulation of experimental autoimmune encephalomyelitis by α9*- and β2*-nicotinic acetylcholine receptors
نویسندگان
چکیده
Nicotine is a potent inhibitor of the immune response and is protective against experimental autoimmune encephalomyelitis (EAE). Initial studies suggested that the cholinergic system modulates inflammation via the α7-nicotinic acetylcholine receptor (nAChR) subtype. We recently have shown that effector T cells and myeloid cells constitutively express mRNAs encoding nAChR α9 and β2 subunits and found evidence for immune system roles for non-α7-nAChRs. In the present study, we assessed the effects of nAChR α9 or β2 subunit gene deletion on EAE onset and severity, with or without nicotine treatment. We report again that disease onset is delayed and severity is attenuated in nicotine-treated, wild-type mice, an effect that also is observed in α9 subunit knock-out (KO) mice irrespective of nicotine treatment. On the other hand, β2 KO mice fail to recover from peak measures of disease severity regardless of nicotine treatment, despite retaining sensitivity to nicotine's attenuation of disease severity. Prior to disease onset, we found significantly less reactive oxygen species production in the central nervous system (CNS) of β2 KO mice, elevated proportions of CNS myeloid cells but decreased ratios of CNS macrophages/microglia in α9 or β2 KO mice, and some changes in iNOS, TNF-α and IL-1β mRNA levels in α9 KO and/or β2 KO mice. Our data thus suggest that β2*- and α9*-nAChRs, in addition to α7-nAChRs, have different roles in endogenous and nicotine-dependent modulation of immune functions and could be exploited as therapeutic targets to modulate inflammation and autoimmunity.
منابع مشابه
Distinctive Roles for α7*- and α9*-Nicotinic Acetylcholine Receptors in Inflammatory and Autoimmune Responses in the Murine Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis
Previous studies have demonstrated immunosuppressive and anti-inflammatory effects of nicotine, including in the experimental autoimmune encephalomyelitis (EAE) model in mice of some forms of multiple sclerosis (MS). Other studies using knock-out (KO) mice have implicated nicotinic acetylcholine (ACh) receptors containing α7, α9, or β2 subunits (α7*-, α9*- or β2*-nAChR) in different, disease-ex...
متن کاملModulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملNicotinic attenuation of central nervous system inflammation and autoimmunity.
The expression of nicotinic acetylcholine receptors by neurons, microglia, and astrocytes suggests possibly diverse mechanisms by which natural nicotinic cholinergic signaling and exposure to nicotine could modulate immune responses within the CNS. In this study, we show that nicotine exposure significantly delays and attenuates inflammatory and autoimmune responses to myelin Ags in the mouse e...
متن کاملAcetylcholine-producing NK cells attenuate CNS inflammation via modulation of infiltrating monocytes/macrophages.
The nonneural cholinergic system of immune cells is pivotal for the maintenance of immunological homeostasis. Here we demonstrate the expression of choline acetyltransferase (ChAT) and cholinergic enzymes in murine natural killer (NK) cells. The capacity for acetylcholine synthesis by NK cells increased markedly under inflammatory conditions such as experimental autoimmune encephalomyelitis (EA...
متن کاملInhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 91 شماره
صفحات -
تاریخ انتشار 2013